首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3340篇
  免费   161篇
  国内免费   42篇
测绘学   86篇
大气科学   285篇
地球物理   706篇
地质学   1293篇
海洋学   239篇
天文学   600篇
综合类   12篇
自然地理   322篇
  2021年   39篇
  2020年   61篇
  2019年   80篇
  2018年   87篇
  2017年   99篇
  2016年   116篇
  2015年   100篇
  2014年   118篇
  2013年   175篇
  2012年   114篇
  2011年   169篇
  2010年   150篇
  2009年   200篇
  2008年   174篇
  2007年   168篇
  2006年   155篇
  2005年   137篇
  2004年   133篇
  2003年   100篇
  2002年   94篇
  2001年   68篇
  2000年   62篇
  1999年   57篇
  1998年   50篇
  1997年   52篇
  1996年   55篇
  1995年   43篇
  1994年   27篇
  1993年   30篇
  1992年   27篇
  1991年   40篇
  1990年   22篇
  1989年   25篇
  1988年   31篇
  1987年   36篇
  1986年   23篇
  1985年   30篇
  1984年   27篇
  1983年   17篇
  1982年   27篇
  1981年   31篇
  1980年   28篇
  1979年   17篇
  1978年   15篇
  1977年   20篇
  1976年   17篇
  1975年   13篇
  1974年   26篇
  1973年   21篇
  1971年   14篇
排序方式: 共有3543条查询结果,搜索用时 250 毫秒
11.
Our current understanding on sedimentary deep-water environments is mainly built of information obtained from tectonic settings such as passive margins and foreland basins. More observations from extensional settings are particularly needed in order to better constrain the role of active tectonics in controlling sediment pathways, depositional style and stratigraphic stacking patterns. This study focuses on the evolution of a Plio-Pleistocene deep-water sedimentary system (Rethi-Dendro Formation) and its relation to structural activity in the Amphithea fault block in the Corinth Rift, Greece. The Corinth Rift is an active extensional basin in the early stages of rift evolution, providing perfect opportunities for the study of early deep-water syn-rift deposits that are usually eroded from the rift shoulders due to erosion in mature basins like the Red Sea, North Sea and the Atlantic rifted margin. The depocentre is located at the exit of a structurally controlled sediment fairway, approximately 15 km from its main sediment source and 12 km basinwards from the basin margin coastline. Fieldwork, augmented by digital outcrop techniques (LiDAR and photogrammetry) and clast-count compositional analysis allowed identification of 16 stratigraphic units that are grouped into six types of depositional elements: A—mudstone-dominated sheets, B—conglomerate-dominated lobes, C—conglomerate channel belts and sandstone sheets, D—sandstone channel belts, E—sandstone-dominated broad shallow lobes, F—sandstone-dominated sheets with broad shallow channels. The formation represents an axial system sourced by a hinterland-fed Mavro delta, with minor contributions from a transverse system of conglomerate-dominated lobes sourced from intrabasinal highs. The results of clast compositional analysis enable precise attribution for the different sediment sources to the deep-water system and their link to other stratigraphic units in the area. Structures in the Amphithea fault block played a major role in controlling the location and orientation of sedimentary systems by modifying basin-floor gradients due to a combination of hangingwall tilt, displacement of faults internal to the depocentre and folding on top of blind growing faults. Fault activity also promoted large-scale subaqueous landslides and eventual uplift of the whole fault block.  相似文献   
12.
Ensemble modelling was used to assess the robustness of projected impacts of pumped‐storage (PS) operation and climate change on reservoir ice cover. To this end, three one‐dimensional and a two‐dimensional laterally averaged hydrodynamic model were set up. For the latter, the strength of the impacts with increasing distance from the dam was also investigated. Climate change effects were simulated by forcing the models with 150 years of synthetic meteorological time series created with a weather generator based on available air temperature scenarios for Switzerland. Future climate by the end of the 21st century was projected to shorten the ice‐covered period by ~2 months and decrease ice thicknesses by ~13 cm. Under current climate conditions, the ice cover would already be affected by extended PS operation. For example, the average probability of ice coverage on a specific day was projected to decrease by ~13% for current climate and could further be reduced from ~45% to ~10% for future climate. Overall, the results of all models were consistent. Although the number of winters without ice cover was projected to increase for all one‐dimensional models, studying individual segments of the two‐dimensional model showed that the impact was pronounced for segments close to the PS intake/outlet. In summary, the reservoir's ice cover is expected to partially vanish with higher probability of open water conditions closer to the PS intake/outlet.  相似文献   
13.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   
14.
Transient storage of floodwaters in aquifers is known to attenuate peak flows in rivers and drive subsurface dissolution. Transient aquifer storage could be enhanced in watersheds overlying karst aquifers where caves facilitate surface and groundwater exchange. Few studies, however, have examined controls on, or magnitudes of, transient aquifer storage or flood peak attenuation in karstic watersheds. Here we evaluate flood peak attenuation with multiple linear regression analyses of 10 years of river and groundwater data from the Suwannee River, which flows over the karstic upper Floridan aquifer in north-central Florida and experiences frequent flooding. Regressions show antecedent river stage exerts the dominant control on magnitudes of transient aquifer storage, with recharge and time to peak having secondary controls. Specifically, low antecedent stages result in larger magnitudes of transient aquifer storage and thus greater flood attenuation than conditions of elevated antecedent stage. These findings suggest subsurface weathering, including cave formation and enlargement, caused by transient aquifer storage could occur on a more frequent basis in aquifers where groundwater table elevation is lowered due to anthropogenic or climatic influences. Our work also shows that measures of groundwater table elevation prior to an event could be used to improve predictive flood models. © 2018 John Wiley & Sons, Ltd.  相似文献   
15.

Satellite altimetry has been widely used to determine surface elevation changes in polar ice sheets. The original height measurements are irregularly distributed in space and time. Gridded surface elevation changes are commonly derived by repeat altimetry analysis (RAA) and subsequent spatial interpolation of height change estimates. This article assesses how methodological choices related to those two steps affect the accuracy of surface elevation changes, and how well this accuracy is represented by formal uncertainties. In a simulation environment resembling CryoSat-2 measurements acquired over a region in northeast Greenland between December 2010 and January 2014, different local topography modeling approaches and different cell sizes for RAA, and four interpolation approaches are tested. Among the simulated cases, the choice of either favorable or unfavorable RAA affects the accuracy of results by about a factor of 6, and the different accuracy levels are propagated into the results of interpolation. For RAA, correcting local topography by an external digital elevation model (DEM) is best, if a very precise DEM is available, which is not always the case. Yet the best DEM-independent local topography correction (nine-parameter model within a 3,000 m diameter cell) is comparable to the use of a perfect DEM, which exactly represents the ice sheet topography, on the same cell size. Interpolation by heterogeneous measurement-error-filtered kriging is significantly more accurate (on the order of 50% error reduction) than interpolation methods, which do not account for heterogeneous errors.

  相似文献   
16.
In order to investigate the development of forest soils formed on loess, six representative modern soil pedons were selected along a precipitation gradient extending from eastern Golestan(mean annual precipitation, MAP = 500 mm)to eastern Mazandaran Provinces(MAP = 800 mm).Physiochemical, micromorphological and magnetic properties, as well as clay mineralogy of soils were studied using standard methods. Soils are mainly classified as Alfisols and Mollisols. Downward decalcification and the subsequent clay illuviation were the main criteria of soil development in all study areas. Pedogenic magnetic susceptibility of pedons studied varied systematically across the precipitation gradient in Northern Iran, increasing from 14.66 ×10~(-8) m~3 kg~(-1) at the eastern part to 83.75 × 10~(-8) m~3 kg~(-1) at the western margin of this transect. The frequencydependent magnetic susceptibility showed an increasing trend with rainfall as well. The micromorphological study of soils indicated that there is a positive relationship between climate gradient (increasing rainfall) and the micromorphological index of soil development(MISECA). The area and thickness of clay coatings showed an increasing trend with rainfall. Grain size analysis indicates that pedogenic processes are responsible for changing original grain size distribution of loess in our soils.The correlation achieved among modern soil properties and precipitation could be applied to the buried paleosols in the whole study area to refer degree of paleosol development and to reconstruct the paleoclimate.  相似文献   
17.
The characterization of pore-space connectivity in porous media at the sediment/water interface is critical in understanding contaminant transport and reactive biogeochemical processes in zones of groundwater and surface-water exchange. Previous in situ studies of dual-domain (i.e., mobile/less-mobile porosity) systems have been limited to solute tracer injections at scales of meters to hundreds of meters and subsequent numerical model parameterization using fluid concentration histories. Pairing fine-scale (e.g., sub-meter) geoelectrical measurements with fluid tracer data over time alleviates dependence on flowpath-scale experiments, enabling spatially targeted characterization of shallow sediment/water interface media where biogeochemical reactivity is often high. The Dual-Domain Porosity Apparatus is a field-tested device capable of variable rate-controlled downward flow experiments. The Dual-Domain Porosity Apparatus facilitates inference of dual-domain parameters, i.e., mobile/less-mobile exchange rate coefficient and the ratio of less mobile to mobile porosity. The Dual-Domain Porosity Apparatus experimental procedure uses water electrical conductivity as a conservative tracer of differential loading and flushing of pore spaces within the region of measurement. Variable injection rates permit the direct quantification of the flow-dependence of dual-domain parameters, which has been theorized for decades but remains challenging to assess using existing experimental methodologies.  相似文献   
18.
Classical depth-integrated smoothed particle hydrodynamics (SPH) models for avalanches are extended in the present work to include a μ(I)− rheological model enriched with a fragmentation law. With this improvement, the basal friction becomes grain distribution dependent. Rock avalanches, where grain distribution tends to change with time while propagating, are the appropriate type of landslide to apply the new numerical proposal. The μ(I)− rheological models considered in the present work are those of Hatano and Gray, combined with two different fragmentation laws, a hyperbolic and a fractal-based law. As an application, Frank avalanche, which took place in Canada in 1903, is analyzed under the scope of the present approach, focusing in the influence of the rheological and fragmentation laws in the evolution of the avalanche.  相似文献   
19.
The Laurentide Ice Sheet was characterized by a dynamic polythermal base. However, important data and knowledge gaps have led to contrasting reconstructions in areas such as the Labrador Ice Divide. In this study, detailed fieldwork was conducted at the southeastern edge of a major landform boundary to resolve the relative ice flow chronology and constrain the evolution of the subglacial dynamics, including the migration and collapse of the Labrador Ice Divide. Surficial mapping and analysis of 94 outcrop‐scale ice flow indicators were used to develop a relative ice flow chronology. 10Be exposure ages were used with optical ages to confine the timing of deglaciation within the study area. Four phases of ice flow were identified. Flow 1 was a northeasterly ice flow preserved under non‐erosive subglacial conditions associated with the development of an ice divide. Flow 2 was a northwest ice flow, which we correlate to the Ungava Bay Ice Stream and led to a westward migration of the ice divide, preserving Flow 2 features and resulting in Flow 3's eastward‐trending indicators. Flow 4 is limited to sparse fine striations within and around the regional uplands. The new optical ages and 10Be exposure ages add to the regional geochronology dataset, which further constrains the timing of ice margin retreat in the area to around 8.0 ka. Copyright © 2019 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.  相似文献   
20.
Sequence stratigraphy for clastic continental margins predicts the development of sand-rich turbidite deposits during specific times in relation to base-level cycles. It is now widely understood that deltas can extend to the shelf-edge forced by high sediment flux and/or base level, providing a direct connection to transfer sediment and sand to the slope and basin floor even during high base level periods. Herein, we build a stratigraphic forward model for the last 120 kyr of the fluvio-deltaic to deep-water Brazos system (USA) where sediment partitioning along an Icehouse continental margin can be evaluated. The reduced-complexity stratigraphic forward model employs geologically constrained input parameters and mass balance. The modelled architecture is consistent with the location of depositional units previously mapped in the shelf. Sand bypasses the shelf and upper slope between 35 to 15 kyr before present and only about 20%–30% of all the sediment and sand supplied to the system is transferred to deep water. Several scenarios based on the initial Brazos model investigate the relationships between base level and deep-water sand ratio (DWSR). DWSR is defined as the relative amount of sand transferred to the deep-water portions of the system subdivided by the total sand input to the model. Linear correlations between DWSR and base level change rates or base level are very poor. Short-term variability due to local processes (for example avulsions) is superimposed to the long-term trends and mask the base level signal. DWSR for an entire base-level cycle is mainly controlled by the proportion of time the delta stays docked at the shelf-edge. Stratigraphic forward models are useful to complement field observations and quantify how different processes control stratigraphy, which is important for making predictions in areas with limited information.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号